Predicting Natural Hazards with Neuronal Networks

نویسندگان

  • Matthias Rauter
  • Daniel Winkler
چکیده

Gravitational mass flows, such as avalanches, debris flows and rockfalls are common events in alpine regions with high impact on transport routes. Within the last few decades, hazard zone maps have been developed to systematically approach this threat. These maps mark vulnerable zones in habitable areas to allow effective planning of hazard mitigation measures and development of settlements. Hazard zone maps have shown to be an effective tool to reduce fatalities during extreme events. They are created in a complex process, based on experience, empirical models, physical simulations and historical data. The generation of such maps is therefore expensive and limited to crucially important regions, e.g. permanently inhabited areas. In this work we interpret the task of hazard zone mapping as a classification problem. Every point in a specific area has to be classified according to its vulnerability. On a regional scale this leads to a segmentation problem, where the total area has to be divided in the respective hazard zones. The recent developments in artificial intelligence, namely convolutional neuronal networks, have led to major improvement in a very similar task, image classification and semantic segmentation, i.e. computer vision. We use a convolutional neuronal network to identify terrain formations with the potential for catastrophic snow avalanches and label points in their reach as vulnerable. Repeating this procedure for all points allows us to generate an artificial hazard zone map. We demonstrate that the approach is feasible and promising based on the hazard zone map of the Tirolean Oberland. However, more training data and further improvement of the method is required before such techniques can be applied reliably.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Entropy-based Serviceability Assessment of Water Distribution Networks, Subjected to Natural and Man-Made Hazards

In this study a modified entropy-based measure is presented for evaluating the serviceability level of water distribution networks in which the hydraulic uncertainties (flow rates in pipes) as well as the uncertainties due to mechanical parameters (failure probabilities of links) are considered simultaneously. In the proposed entropy calculation method, the connectivity order of the network dem...

متن کامل

Natural hazards risk assessment using Bayesian networks

The objective of the present paper is the demonstration of the potential and advantages of Bayesian networks for the application in risk assessments for natural hazards. For this purpose, a general framework for natural hazards risk assessment is presented and a brief introduction to Bayesian networks is provided. The methodology is then applied to rating systems for assessing rock-fall hazard ...

متن کامل

Evaluation the efficiency of using Artificial Neural Networks in predicting meteorological droughts in north-west of Iran

Drought is one of the most destructive natural disasters in human societies that cause irreparable impacts on agriculture, environment, society and economics. So, awareness of occurrence of droughts can be effective in reducing losses. In this study, in order to modeling and forecasting drought severity in a 37 year time period (1971-2007) in 21 meteorological stations, located in the cold semi...

متن کامل

Prediction of extreme floods in the eastern Central Andes based on a complex networks approach.

Changing climatic conditions have led to a significant increase in the magnitude and frequency of extreme rainfall events in the Central Andes of South America. These events are spatially extensive and often result in substantial natural hazards for population, economy and ecology. Here we develop a general framework to predict extreme events by introducing the concept of network divergence on ...

متن کامل

Artificial neural networks: applications in predicting pancreatitis survival

Artificial neural networks are intelligent systems that have successfully been used for prediction in different medical fields. In this study, the efficiency of a neural network for predicting the survival of patients with acute pancreatitis is compared with days-of-survival obtained from patients. A three- layer back-propagation neural network was developed for this purpose. Clinical data (e.g...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1802.07257  شماره 

صفحات  -

تاریخ انتشار 2018